The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] AR system(180hit)

101-120hit(180hit)

  • A State Observer for a Special Class of MIMO Nonlinear Systems and Its Application to Induction Motor

    Sungryul LEE  Euntai KIM  Mignon PARK  

     
    PAPER-Systems and Control

      Vol:
    E86-A No:4
      Page(s):
    866-873

    This paper presents an observer design methodology for a special class of MIMO nonlinear systems. First, we characterize the class of MIMO nonlinear systems that consists of the linear observable part and the nonlinear part with a block triangular structure. Also, the similarity transformation that plays an important role in proving the convergence of the proposed observer is generalized to MIMO systems. Since the gain of the proposed observer minimizes a nonlinear part of the system to suppress for the stability of the error dynamics, it improves the transient performance of the high gain observer. Moreover, by using the generalized similarity transformation, it is shown that under some observability and boundedness conditions, the proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results for induction motor are included to illustrate the validity of our design scheme.

  • Centralized Radio Resource Management Strategies with Heterogeneous Traffics in HAPS WCDMA Cellular Systems

    Andrea ABRARDO  David SENNATI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:3
      Page(s):
    1040-1049

    This paper addresses the system throughput maximization problem for HAPS third generation cellular systems. We assume that the Stratospheric Platform is able to perform a perfect link gain estimation for all mobile terminals, such that a centralized resource allocation strategy is made possible. A classical 3G wireless scenario is considered, where traffics characterized by different bit rates coexist with Best Effort Traffic services without stringent bit rate constraints. In this scenario, we firstly envisage three Rate Assignment schemes for best effort terminals which aim at achieving the maximum system throughput subject to different bit rate constraints. For the second envisaged rate assignment scheme, which represents the best compromise between service fairness and throughput, we then propose a simplified approach that allows to noticeably decrease the implementation complexity with a slight performance degradation.

  • Cellular and PHS Base Station Antenna Systems Open Access

    Hiroyuki ARAI  Keizo CHO  

     
    INVITED PAPER

      Vol:
    E86-B No:3
      Page(s):
    980-992

    This paper reviews the antenna system for Japanese celullar systems and PHS (Personal Handphone System). The unique features of the Japanese cellualr system are multi-band operation, compact diversity antennas, electronic beam tilting, and indoor booster systems. The original antennas for the above purpose will be described. The PHS is also a unique mobile communication system in Japan, and is mainly used for high speed, low cost data transmission. Its original antennas are also presented in this paper.

  • CDMA Multi-Cell Performance of Combined Serial Interference Canceller and Normalized Griffiths' Algorithm

    Jonas KARLSSON  Hideki IMAI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    162-169

    Interference Cancellation (IC) receivers can be used in CDMA cellular systems to improve the capacity. The IC receivers can be divided into two main categories, Single-User Detectors (SUD) and Multi-User Detectors (MUD). They have different characteristics in terms of intra-cell and inter-cell interference cancellation ability. In this paper we propose two new IC receivers that combines the properties of SUD and MUD receivers. The first one is a Serial IC receiver followed by the Normalized Griffiths' algorithm (SING). The second one is an Integrated Serial IC and Normalized Griffiths' algorithm (iSING). We first compare their basic single-cell performance with the conventional RAKE receiver, the Serial IC and the Normalized Griffiths' Algorithm. Next, we examine their multi-cell performance by doing multi-cell link-level simulations. The results show that even though the Serial IC receiver has good single-cell performance, the proposed receivers have as much as 35-40% higher capacity than the Serial IC receiver in the multi-cell case under the ideal conditions assumed in this paper.

  • SAC for Nonlinear Systems Using Elman Recurrent Neural Networks

    Jianming LU  Jiunshian PHUAH  Takashi YAHAGI  

     
    PAPER-Nonlinear Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1831-1840

    This paper presents a method of simple adaptive control (SAC) for nonlinear systems using Elman recurrent neural networks (ERNNs). The control input is given by the sum of the output of a simple adaptive controller and the output of the ERNN. The ERNN is used to compensate the nonlinearity of plant dynamics that is not taken into consideration in the usual SAC. The role of the ERNN is to construct a linearized model by minimizing the output error caused by nonlinearities in the control systems.

  • Performance Evaluation of Pilot Symbol Assisted Power Control in CDMA Systems

    Moh Lim SIM  Hean Teik CHUAH  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:7
      Page(s):
    1257-1264

    Transmitter power control is an effective scheme to improve the performance of cellular DS/CDMA systems. In the reverse link, pilot symbols are used to assist the estimation of received signal power in order to improve the performance of power control. In this paper, we propose a model for the evaluation of the performance of a power-controlled reverse link CDMA system in the presence of Rayleigh flat fading. The model allows analysis of design parameters such as the number of pilot symbols, the power control updating frequency and the maximum allowable transmitted power. Analysis result shows that when transmitter power control is used, system capacity can be increased by more than 40% for typical normalised Doppler frequency in cellular communications.

  • Limiting the Holding Time in Mobile Cellular Systems during Heavy Call Demand Periods in the Aftermath of Disasters

    Kazunori OKADA  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1454-1462

    Call demand suddenly and greatly increases in the aftermath of a major disaster, because people want to check on their families and friends in the stricken area. Many call attempts in mobile cellular systems are blocked due to the limited radio frequency resources. In this paper, as a solution to this problem, limiting the holding time of calls is investigated and a dynamic holding time limit (DHTL) method, which varies the holding time limit dynamically based on the number of call attempts, is proposed. The effect of limiting the holding time is investigated first using a computer simulation with a constant and heavy traffic load model. This simulation shows that the average holding time of calls is decreased as the holding time limit is reduced. But it also shows limiting the holding time decreases the number of calls blocked and forced call terminations at handover considerably. Next, a simple estimation method for the holding time limit, which reduces the blocking rate to the normal rate for increasing call demand, is described. Finally, results are given of a simulation, which show that the DHTL method keeps good performance for a sudden and great traffic load fluctuation condition.

  • Forward Link Erlang Capacity of the IMT-2000 Hierarchical Cellular System with Mixed Traffic Rates

    Young-Yong LEE  Sang-Mun LEE  Hyung-Jin CHOI  

     
    PAPER

      Vol:
    E85-A No:6
      Page(s):
    1289-1298

    In this paper, the forward link erlang capacity and outage probability for hierarchical cellular system based on 2 layer macrocell/microcell are derived analytically by considering the impact of imperfect power control and soft hand-off. The analysis on the outage probability is carried out using two methods: lognormal approximation and Chernoff upper bound. We assume that voice and multi-rate data service users are distributed uniformly in each cell and the same spectrum is applied in both layers. In addition, we take into account the base station transmission power ratio between tiers and the relative position of microcell having island distribution in macrocell. The forward link interference is evaluated by using Monte-Carlo simulation introduced in [2]. In this paper, we compare the forward link erlang capacity of 1x system to 3x system and show that 3x system can increase the user capacity by 3.4 times in case of macrocell and microcell, respectively, compared to 1x system.

  • Joint Effect of Transmit Power Control and Antenna Diversity on Spectrum Efficiency of a Cellular System

    Fumiyuki ADACHI  Akihito KATOH  Deepshikha GARG  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    919-928

    This paper addresses a classic question about whether transmit power control (TPC) can increase the spectrum efficiency of a TDMA system and an FDMA cellular system as in the case of a DS-CDMA cellular system. Two types of TPC schemes are considered; one is slow TPC that regulates the distance dependent path loss and shadowing loss, while the other is fast TPC that regulates multipath fading as well as path loss and shadowing loss. In addition to TPC, antenna diversity reception is considered. The allowable interference rise factor χ, which is defined as the interference plus background noise-to-background noise power ratio, is introduced. The simple expressions for the signal-to-interference plus background noise power ratio (SINR) at the diversity combiner output using maximal-ratio combining (MRC) are derived to obtain the reuse distance by computer simulations. The impact of joint use of TPC and antenna diversity reception on the spectrum efficiency is discussed. It is found that the joint use of fast TPC and antenna diversity is advantageous and larger spectrum efficiency can be achieved than with no TPC. On the other hand, the use of slow TPC is found advantageous only for small values of standard deviation of shadowing loss; however, the improvement in the spectrum efficiency is quite small.

  • Analysis of Border-Collision Bifurcations in a Flow Model of a Switching System

    Hiroto TANAKA  Toshimitsu USHIO  

     
    PAPER

      Vol:
    E85-A No:4
      Page(s):
    734-739

    In this paper, we consider a switching system modeled by a discrete-time flow model. By simulation, it is shown that a lot of border-collision bifurcations occur since the system is piecewise linear. By using its characteristics, we classify its dynamics into modes, and we define blocks and a kind of Poincare map based on the modes. We calculate occurrence conditions of each block and all the Poincare points by computer-assisted analysis. We consider two bifurcation phenomena, and we show that a Poincare point hits a boundary of the occurrence conditions of a block. So, both bifurcations are indeed border-collision bifurcations.

  • Optimization of Dynamic Allocation of Transmitter Power in a DS-CDMA Cellular System Using Genetic Algorithms

    Jie ZHOU  Yoichi SHIRAISHI  Ushio YAMAMOTO  Yoshikuni ONOZATO  Hisakazu KIKUCHI  

     
    PAPER-Communication Systems

      Vol:
    E84-A No:10
      Page(s):
    2436-2446

    In this paper, we propose an approach to solve the power control issue in a DS-CDMA cellular system using genetic algorithms (GAs). The transmitter power control developed in this paper has been proven to be efficient to control co-channel interference, to increase bandwidth utilization and to balance the comprehensive services that are sharing among all the mobiles with attaining a common signal-to-interference ratio(SIR). Most of the previous studies have assumed that the transmitter power level is controlled in a constant domain under the assumption of uniform distribution of users in the coverage area or in a continuous domain. In this paper, the optimal centralized power control (CPC) vector is characterized and its optimal solution for CPC is presented using GAs in a large-scale DS-CDMA cellular system under the realistic context that means random allocation of active users in the entire coverage area. Emphasis is put on the balance of services and convergence rate by using GAs.

  • Tracking Control of Mobile Robots without Constraint on Velocities

    Ching-Hung LEE  Ti-Chung LEE  Ching-Cheng TENG  

     
    PAPER-Systems and Control

      Vol:
    E84-A No:9
      Page(s):
    2280-2287

    A general tracking control problem for mobile robots is proposed and solved using the backstepping technique. A global result is given for the kinematic steering system to make the tracking error approaching to zero asymptotically. Based on our efforts, the proposed controller can solve both the tracking problem and the regulation problem of mobile robots. In particular, mobile robots can now globally follow any differentiable with bounded velocities path such as a straight line, a circle and the path approaching to the origin using the proposed controller. Moreover, the problem of back-into-garage parking is also solved by our approach. Some interesting simulation results are given to illustrate the effectiveness of the proposed tracking control laws.

  • A Retrospective on Input-Output Stability Theory

    Irwin W. SANDBERG  

     
    INVITED PAPER

      Vol:
    E84-A No:9
      Page(s):
    2084-2089

    This short paper is a written version of one part of the plenary address given at the November 1999 NOLTA symposium held at the Hilton Waikoloa Village in Hawaii. I was invited by Professor Shin'ichi Oishi, a general vice-chairman of the symposium, to give a survey of some of my own research. I was happy to do that--in the context of a description of what Bell Labs.' research environment was like in its math center in the 1960's, and why I feel that today's young researchers are often too constrained in that they are typically not encouraged to try to do really interesting work. Here the emphasis is on only the origins of input-output stability theory.

  • IMT-2000 and Beyond IMT--Radio Technologies toward Future Mobile Communications--

    Fumio WATANABE  

     
    INVITED PAPER

      Vol:
    E84-B No:9
      Page(s):
    2341-2347

    The field of mobile communications has continued to spread with astonishing speed in recent years. The expansion of mobile communications and the Internet has not only brought changes to communications services but also exerted huge effects on the economy and daily life. IMT-2000, International Mobile Telecommunications, is the next generation system for mobile communications systems currently being implemented. Standardization and development of IMT-2000 are in much progress under international frameworks to start commercial service by around the year 2001. This paper focuses in particular on radio transmission technology, giving an overall view of IMT-2000 standardization and technological status, as well as future technical directions extending beyond IMT-2000.

  • Adaptive Control of Uncertain Chaotic Systems Based on Takagi-Sugeno Fuzzy Models

    Chang-Woo PARK  Chang-Hoon LEE  Jung-Hwan KIM  Mignon PARK  

     
    PAPER-Chaos & Dynamics

      Vol:
    E84-A No:9
      Page(s):
    2101-2117

    In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control (AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno (T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model (SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied to control of a uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control (CMFC).

  • A Method of Model Reference Adaptive Control for MIMO Nonlinear Systems Using Neural Networks

    Jianming LU  Jiunshian PHUAH  Takashi YAHAGI  

     
    PAPER-Nonlinear Signal Processing

      Vol:
    E84-A No:8
      Page(s):
    1933-1941

    This paper presents a method of MRAC (model reference adaptive control) for MIMO (multi-input multi-output) nonlinear systems using NNs (neural networks). The control input is given by the sum of the output of a model reference adaptive controller and the output of the NN (neural network). The NN is used to compensate the nonlinearity of plant dynamics that is not taken into consideration in the usual MRAC. The role of the NN is to construct a linearized model by minimizing the output error caused by nonlinearities in the control systems.

  • Clique Packing Approximation for Analysis of Teletraffic Characteristics of Dynamic Channel Assignment Considering Mobility

    Heun-Soo LEE  Naoyuki KARASAWA  Keisuke NAKANO  Masakazu SENGOKU  

     
    PAPER

      Vol:
    E84-A No:7
      Page(s):
    1651-1659

    This paper discusses the teletraffic characteristics of cellular systems using Dynamic Channel Assignment. In general, it is difficult to exactly and theoretically analyze the teletraffic characteristics of Dynamic Channel Assignment. Also, it is not easy to theoretically evaluate influence of mobility on the traffic characteristics. This paper proposes approximate techniques to analyze teletraffic characteristics of Dynamic Channel Assignment considering mobility. The proposed techniques are based on Clique Packing approximation.

  • Vehicle Motion in Large and Small Cities and Teletraffic Characterization in Cellular Communication Systems

    Kazuyoshi SAITOH  Hirotoshi HIDAKA  Noriteru SHINAGAWA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E84-B No:4
      Page(s):
    805-813

    Understanding traffic characteristics in mobile communications is invaluable for planning, designing, and operating cellular networks, and various mobility models have therefore come to be developed to predict traffic characteristics. In this paper, cell-dwell-time distribution and transition probability in a virtual cellular system are first estimated from the results of measuring taxi motion using the Global Positioning System (GPS) for large-city and small-city ranges of motion. Then, on the basis of simulations using these estimations, traffic characteristics like handoff rate and channel blocking probability in a cellular system are evaluated. It was found that a difference between large and small cities could be observed in speed distribution and direction-of-travel probability, but only a slight difference in cell-dwell-time distribution.

  • Impact of Interference Suppression Techniques on Spectrum Overlaid Systems of TDMA/W-CDMA and N-CDMA/W-CDMA

    Jie ZHOU  Ushio YAMAMOTO  Yoshikuni ONOZATO  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    539-549

    A simplified analysis is presented for the reverse link maximum capacity trade-offs between each layer, spectrum efficiency and its multi-rate features of TDMA/W-CDMA and N-CDMA/W-CDMA overlaid systems with the perfect power control based on the measurement of signal-to-interference ratio (CIR). In order to suppress the multi-cross interference, the other important techniques used in the analysis are the ideal notch filtering and the signal level clipper for W-CDMA system transmitters and receivers. We firstly propose the concepts of the notch filtering depth and signal level clipping depth in the paper. The numerical results can be adopted as a guideline in designing the overlaid systems in the various cases as well as a means to investigate the flexibility of sharing of the spread spectrum and their feasibility in the future mobile communication system.

  • Evaluation of Reverse-Link Capacity of a DS-CDMA System with Power Control and Diversity Reception

    Dugin LYU  Hirohito SUDA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E84-B No:2
      Page(s):
    238-244

    The reverse-link of the DS-CDMA cellular system requires transmit power control (TPC) and diversity reception. This paper develops the expression of the received signal-to-interference ratio (SIR), and evaluates the outage probability using the Monte Carlo simulation to obtain the link capacity. The link capacities with received signal strength (SS)-based TPC and SIR-based TPC are compared. This paper investigates the required maximum and minimum transmit powers and the capacity gain of the SIR-based TPC over SS-based TPC as well as the effect of the diversity reception on the link capacity and transmit power. The reverse-link capacity is compared with the forward-link capacity to check the balance of capacities between both links.

101-120hit(180hit)